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HYDRODYNAMIC INSTABILITY OF THE ABLATION FRONT IN THE PRESENCE 

OF ABLATION ACCELERATION OF A LAYER 

N. A. Inogamov UDC 532.5+533.95 

I. A large number of papers on the instability of an ablation front (AF) accompanying 
the acceleration of a layer by the ablation pressure has now been published [I-13]. The 
Cauchy problem, linearized around the stationary flow, which is found by numerical calcula- 
tion, is studied numerically in [4, 5]; the numerical calculation of the Cauchy problem, 
linearized around the stationary flow, is carried out in [6, 7]. The stationary solution 
is found by numerical integration of a system of ordinary differential equations. We must 
make an important remark regarding [6-7]. We shall show that the stationary flow in a gravi- 
tational field has a peculiarity which invalidates the results of [6-7], regarding taking 
into account of the compressibility of the cold material and of the long-wavelength pertur- 
bations. We shall study the stationary solution in the region filled with cold matter. In 
this region, in the vicinity of the AF the flow is subsonic (M ~ I). In the presence of 
gravity, the Mach number M = v/c in the subsonic flow increases monotonically away from the 
AF in the cold matter and at some distance LI from the AF M = I. The point is that in the 
cold matter the electronic thermal conductivity is small and the heat fluxes correspond as 
negligibly small. Therefore the stationary flow of cold matter is isentropic. For subsonic 
flow with M ~ I in the vicinity of the AF, because of the effect of the gravity, the pressure 
in the cold matter decreases away from the AF. The flow is isentropic, so that the density 
and the sound velocity decrease together with the pressure. The flow velocity v in this case 
increases, since the mass flow must be constant and correspondingly M = v/c increases. The 
appearance of an internal supersonic zone in the stationary flow does not correspond to the 
essence of the problem of acceleration of the layer by the ablation pressure. For this rea- 
son the results of [6, 7] are useful only for % ~Ll. When % ~ LI the effect of compress- 
ibility of the cold matter becomes significant, but in the formulation of [6, 7] this effect 
is not taken into account correctly. The question of the compressibility and long-wavelength 
perturbations is analyzed in detail in this paper. 

In addition to the works enumerated above, in which the linear stage is studied, inter- 
esting studies [7-9] on calculations of nonlinear two-dimensional flows have also been pub- 
lished; [I, 2, 10-12] concern analytical estimates. In [10, 11] it is proposed that a sub- 
sonic AF can be replaced by a jump in the deflagration wave. The work in [12] is based on a 
study of an unstable zone in which the vectors Ap and Ap are antiparallel. It is assumed 
that the growing perturbations are spatially localized in this zone. We note that under the 
usual [3, 4] conditions (I ~ 1014 W/cm 2, Nd laser, layer thickness L = I-4 Dm) the thickness 

s of this zone is small (At ~ 0.1Mm). The growing perturbations can have % ~ At. In this 
case, the field of perturbations is spatially localized in a layer of thickness ~% ~ 41 ad- 
jacent to the AF. In this case, the fine structure and the presence of the unstable zone 
are of no significance, since for such waves the fine structure is "hidden" within the thick- 
ness of the line (associated with the thickness of the "slate pencil") marking the perturbed 
boundary. 

2 M~L, where ~ Va/C s v a is the The short-wavelength scale of stabilization %a = va/g ~ = , 
velocity of the AF relative to the cold matter, the index a indicates ablation, c s is the 
sound velocity in the cold matter near AF, and g is the acceleration of the layer, is esti- 
mated in [I]. 

The effect of compressibility is analyzed in [2]. It is shown that for a typical large 
ratio of densities on the AF the dispersion curve in the case of isentropic gas coincides 
with the dispersion curve in the case of an incompressible liquid with an arbitrary ratio of 

2 ' 2 
the parameters v%/c s ~ %/L, where v% = /Igl%. 
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This work extends and provides a more rigorous justification of the results of [I, 2], 
which are concerned with the effect of ablation and compressibility on the development of the 
Rayleigh--Taylor instability (RTI); here we determine the parameters determining the nature of 
the instability (I, L, ~) and the values of the parameters I, L, ~ for which the problem can 
be described by a model of a layer bounded by impermeable, isobaric (free) boundary conditions. 
In this region the instability of the accelerated AF is the RTI. The only complications ap- 
pearing here are those associated with taking into account the compressibility and the multi- 
layered structure of the system. The model with isobaric and weakly permeable boundaries has 
also been used before. For example, it was used in [75] in the problem of instability. The 
purpose of this work is to determine the limits of applicability of the model. 

We shall make a few remarks regarding applications. In applications (see, for example, 
[3]), shells are studied which are required in order to convert the largest possible relative 
fraction of the absorbed energy into the kinetic energy of the shell and then, during the 
soft recuperation, of the kinetic energy stored in the shell into the internal energy of the 
gas contained inside the shell. It is well known [3] that effective recuperation requires the 
use of thinner and more massive shells and the acceleration of the shell must be carried out 
in substantially subsonic states of ablation. The corresponding conditions have the form 

L~R; (1.1) 
Ps ~ P~; (1.2) 

Va ~ G '  ( 1 . 3 )  

where R is the radius of the shell and Ps, Pf are the density of the cold matter in the vicin- 
ity of the AF and of the internal gas. 

The acute problem of the hydrodynamic instability arises precisely in connection with 
the requirements ( 1 . 1 ) - ( 1 . 3 ) .  Indeed, when (7.3) is retained in thick (L ~ R) or a weakly 
degenerate (Pf ~ Ps) shell, this question loses its acuteness. The question of the instabil- 
ity also disappears in the case of the supersonic state of propagation of the electronic ther- 
mal wave along the shell material, when v a ~ c s. 

The instability is associated either with the AF and develops at the stage when the shell 
is driven toward the center, or with the internal boundary of the shell and develops at the 
stage of retardation. As regards the stage of retardation, here the classical Rayleigh--Taylor 
formulation with an impermeable boundary does not give rise to any objections. We discuss 
below only the instability at the acceleration stage. 

If we restrict our attention to the case X ~ R, then the curvature of the shell can be 
neglected~ and the problem of the instability of the shell becomes equivalent to the problem 
of the instability of a flat layer. Perturbations with L ~ k ~ R can be effectively studied 
in the approximation of a liquid film [16]. 

2. Qualitative Analysis. We shall confine our attention to the case A > 5. Here and 
below A is the distance from the point at which the value A = 1.1 is reached up to the point 
at which A = I0 F, where F is the adiabatic index; the dimensionless variable A, associated 
with the entropy, is defined below. We note that the value of 5 is equal in order of magni- 
tude to the distance from the maximum of the density up to the point at which the density 
drops down to p = Ps/10 (see Fig. I). In addition, A is approximately equal to the maximum 
value of the function (12 lnp(y, t)/~yl) -I. 

In studying modes with k > 5, it is possible to work with the boundary layer y = q(x, t) 
(see Fig. I). 

If the ablation pressure is "switched on" rapidly enough, the initially stationary matter 
is put into motion by a shock wave with constant intensity. In this case [14, 17, 18], the 
entropy distribution in the cold matter in the layer is nearly uniform, and it remains uniform 
also during the acceleration of the layer, since shock waves do not arise in the layer when 
the ablation pressure Pa is constant, while the electronic thermal conductivity in the cold 
matter is low and the heat fluxes are correspondingly negligibly small, so that the flow of 
cold matter may be regarded as adiabatic. The entropy in the liquid part begins to grow when 
this part intersects the surface of the AF. 

To determine the surface of the AF, which we shall call the boundary of the layer, we 
shall study a system of instantaneous isentropic lines: S = const = AS0, where the entropy 
is the quantity S = pp-F, A is the dimensionless variable, So is the value of the entropy in 
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the cold matter. The isentropic lines corresponding to the values A > I, drawn with some 
step AA > 0, bunch up in a layer with thickness of the order of A. As the surface of the AF 
we shall choose some isentropic line with A = A,(1.1 < A, < 10F), falling into this bunch. 

Jumping ahead, we shall present first the final results, obtained with the help of a 
qualitative analysis. At a fixed radiation frequency the parameters determining the nature 
of the instability are I, L, and ~. The region of applicability of the model in the space 
(I, L, ~) has the form 

IL (L) << I < Iv; (2. I ) 

~min ~- ~ << Ls([). ( 2 . 2 )  

The Mach n u m b e r  i n  t h e  c o r o n a  i n c r e a s e s  m o n o t o n i c a l l y  away f r o m  t h e  AF i n t o  t h e  c o r o n a .  
We shall denote by Ls the distance from the AF to the acoustic surface on which M = I (the 
index s denotes sound). The quantity Ls depends at a fixed frequency of the radiation solely 
on the intensity l:Ls = Ls(I). We denote by I = IL(z ) the function inverse to the monotonic 
function z = Ls(1). The function IL(Z) is a monotonically increasing function of z. It fol- 
lows from what was said for the functions IL(L) and Ls(I ) that the restrictions IL(L) ~ I 
and L ~ Ls(I) are equivalent. Thus the restriction IL(L ) ~ I on the intensity from below 
(the index L means lower) shows that the model is applicable if the accelerated cold layer 
is much thinner than the thickness of the subsonic "pillow" L s. In addition, as will be 
shown below, the model is applicable if ~ ~ Ls(1). 

The restriction I < I U on the intensity from above (the index U indicates upper) by some 
constant I U independent of L and % follows from the condition that the motion of the AF along 
the cold matter must be subsonic. Namely, Va(I) must be <Cs(I) , where Cs(I) = /Fpa(1)/ps is 
the sound velocity in the cold matter in the vicinity of AF, and Pa is the ablation pressure. 
Otherwise, the instability of the AF will be suppressed. The ablation velocity Va(I) in- 
creases with I more rapidly than Cs(I) , so that the function Ms(I) = Va/C s increases mono- 
tonically with I and there exists a value of the intensity I U at which the value Ma(I U) = I 
is attained. 

The lower limit %min is less than or approximately equal to the largest of the quantities 
A and ~a, where A = A(I), %a=~a(/, L)=v~/[gl=(F--i) M~L. The fact that the function ~a(I, 
L), determining the boundary of the region of applicability of the model with respect to 
small-scale modes, is equal to v~ /Igl follows from the hypothesis 2 [formula (2.4)] and the 
condition (2.7), under which the boundary of the layer may be regarded as impermeable. 

We note that if the values of I and L belong to the projection of the region of appli- 
cability of the model onto the (I, L) plane, then it follows from the conditions (2.1) and 
(2.2) that the mode k ~ L belongs to the region of applicability of the model. Indeed, let 
I and L belong to the projection. This means that the two conditions L ~L s and Va ~ c s hold, 
whence it follows that, first of all, ~ ~L s because ~ ~ L ~L s and, second, % > %min. The 
latter condition ~ > kmin is obtained as follows. We have L > %min- Indeed, L > A and L > 
%a = (F -- I)M~L when M a < I (usually M a ~ I), and this means that ~ ~ L > %min also. 

In connection with the applications in [3], intensities of I ~ I014 W/cm 2 (Nd laser) 
are studied. In this case [3, 14], v a = (0.1-0.3)Cs, Ls = 20-30 ~m, A ~ 0.1 ~m, L = I-4 ~m. 
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As we can see, for these values of I and L the conditions (2.]) hold. 

A qualitative analysis leading to (2.1) and (2.2) rests on two assertions. 

Assertion ] (regarding "suddenness" of the response). In the system of coordinates tied 
to the unperturbed motion of the layer (the unperturbed cold matter moves as a whole [14, 17, 

18]), the boundary moves with a velocity ~v a or in the region of applicability of the model 
with a velocity ~v% = J~i~-. Both these velocities are much lower than the characteristic 
velocity scale in the corona. Based on this, it may be asserted that the response of the 
pressure Pa and velocity v a in the corona to the instantaneous form of the boundary is "in- 
stantaneous." The speed of the response is associated with the higher mechanical and ther- 
mal inertia of the layer than of the corona, owing to the high density of the cold matter, 
its low thermal conductivity, and its high heat capacity per unit volume. 

In accordance with this assertion Pa and v a are some functionals of ~ (but not of ~/3t). 
We shall represent ~ in the harmonic form ~ = ~0 + 6~ sinkx. In what follows we shall work 
with the small amplitude ~. In this case, we have Pa = Pa0 ~ 6pa sin kx, v~ = va0 ~ ~Va sin kx 
(the phases coincide, since there are no oscillatory effects), Spa = Gd6~], 6va = GkSq. Here 

5q == (~]i- 11~)/2; 6pa = (Pal--Pa2)/2; ~Ua = (Val Va~)/2 ; the indices 0, ], 2 in front of n, Pa, 
v a refer, respectively, to the unperturbed state, the trough, and the bulge in the boundary 
relative to the layer (see Fig. ]). The responses G k and G d (we call them the "kinematic" 
and "dynamic" responses) are required in order to estimate the breakdown in the degree of 
impenetrability (see the hypothesfs 2) and the degree of isobaricity (see hypothesis ]) at 
the boundary of the cold matter. 

Assertion 2. The structure of the corona in the case of a not very thin layer with L > 
Lmi n ~ 0.3 ~m does not depend on L. Correspondingly, the dependence on L drops out of the 
functions Pa(1), va(1), Ls(1) , Cs(1) , Gd(%, I), Gk(~, I). 

This means that G d and G k can be evaluated for L = ~. 

The results (2.]) and (2.2) follow from two hypotheses. 

Hypothesis I. The modes of interest to us are localized near the AF in a layer whose 
thickness is equal in order of magnitude to ~. For % ~Ls, when the localization of the per- 
turbations deep in the corona is limited by the substantially subsonic section of the corona, 
a rough (apparently with some margin) estimate of the upper limit on the amplitude of the 
pressure response has the form 

16 p.  I t~q = I aa I <  pa/L~. (2.3) 

Hypothesis 2. It is easy to see that the "kinematic" response Gk < 0, since more cold 
matter must flow per unit time through a unit surface area of the AF from the bulge in the AF 
than from the trough in the AF (see Fig. ], the troughs and bulges relative to the cold matter 
are denoted by the numbers ] and 2, respectively), and can be estimated as follows: 

(-~k) < va/k or (-G~) _ v~?k~ (2.4) 

since the opposite inequality (-Gk) ~ Va/% is impossible for ~ > A. To clarify the essence 
of Hypothesis 2, we shall examine the perturbations of the AF with a large amplitude 26q = 
ql -- q2 ~ ~. An order of magnitude estimate of G k is suitable in this case, of course, for 
6n ~ ~ also. Hypothesis 2 essentially follows from the assertion that the velocity Va, equal 
to the normal (relative to the surface of the AF) component of the velocity of the cold matter 
with which the liquid particle of cold matter approaches the AF, is determined primarily by 
the intensity I. The latter fact indicates that in the case of the perturbed ("undulating") 
surface of the AF the velocity Va, though it is different at different points on the surface 
of the AF, is still determined in order of magnitude as before, and as in the unperturbed 
case, by the value of I, i.e., the estimate vaz ~ Va2 ~ Va0 will also hold when 6q ~ ~. This 
is the basis of Hypothesis 2. 

For what follows we shall require a formula relating g and L. From the equation of 
hydrostatics and the condition of continuity of the pressure on the AF Ps = Pa we have 

F p a  c 2 
(2.5) lg[ ( t ' - - t l ~ , j ~ - ( l '  I) L" 

The numerical coefficient in (2.5) was obtained for an isentropic layer and with the 
condition p = 0 on the back side. 
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We shall assume that the pressure distribution is isobaric, if 

]G~I[ << p~ lgl ~ F pa / [ ( r  - -  t ) L ] .  ( 2 . 6 )  

The conditions (2.3) and (2.6) can be put into the form L ~ L s. From here follows the 
left side of (2.1) and the right side Of (2.2). 

The boundary is assumed to be impenetrable, if 

"-Gk << v~/~, v~ =~ ~ .  (2.7) 

Combining (2.4) and (2.7), we find that for %>%a v~-'~va~'~ or~__ Gkl~., where %a is 

given by the formula %a = v~/Igl. The condition % > %a with %a > & gives the left side of 
(2.2). 

It remains to study the case when ~a ~ A. In this case, Va ~ /Alg[', y~z ~ A/va ' and the 
ablation pressure can be neglected. We thus arrive at the problem of the RTI in a static 
layer with a finite density gradient studied previously (see, for example, [19]). In this 
case the increments of all possible RT modes are limited'from above by the Value ~y,, where 
y, = /]gl/A is the Brunt--VgisglN "increment." 

At the nonlinear stage of the development of the instability, in the region of appli- 
cability of the model, the rate of loss of mass by the layer 0% = PsV% due to the RTI must 

r 
be compared with the rate of ablation losses ~ = PsVa �9 It is well known [20] that vk = 
Fr/[g[%, where Froude's number Fr = 0.23-0.40. The value 0.23 is obtained for a two-dimen- 
sional flow in the form of levees, and the value 0.40 corresponds to a square lattice. As 
a result we arrive at a scale %a = (Fr)-2%a larger than %a" A nonlinear quasistationary flow 
can apparently be established in the region %a < % < Xa" Such a flow was observed in [7]. 

The study of the pressure response Pa leads to the conclusion that the model is inap- 
plicable when L ~ L s. The conclusion that in the case of a thick subsonic "pillow" L ~ L s 
isobaric conditions will exist for perturbations with %< or ~L appears to be quite convincing. 
This is also supported by the two'dimensional calculation in [7], in which for values satis- 
fying the conditions L ~ Ls, Va ~ Cs a flow pattern which is typical for RTI was obtained. 

3. Isobaric RT Mode.~ Let us examzne the case of the most dangerous perturbations with 
~ L. If the values of I and L belong to the projection of the region, then the modes % ~ L, 

as shown in Sec. 2, fall into the region of applicability of the model. From (2.5) we obtain 
V~/C 2 s = (~/L)(F -- I) -I This means that for ~ ~ L the compressibility of the cold matter must 
be taken into account. In addition, the multilayer case is of interest in applications. 

It can be shown that the motion 

z = ~ -I-A exp (ik~* + ? t ) , ~ 2  = - - k l g l ,  ( 3 . 1 )  
b=b(x,y,t) 

P = - -  [ g l " j '  O (Yl) dy~ 

is the exact solution of the linearized equations of gasdynamics in an arbitrarily layered 
compressible liquid with an arbitrary value of the parameter %/L. The corresponding motion 
is the motion with "frozen in" isobars, in which the values of the pressure are preserved in 
the liquid particles. It follows from this property that (3.1) satisfies the free boundary 
conditions. The following notation is used in the formulas (3.1): 

z = x + i g , ~  =~ a + i b , ~ *  =: a - - i b ,  ( 3 . 2 )  

b = y I A lexp (kg q. vt) sht (kx + 5), A = 1 A I e~6 

(x, y are Eulerian and a, b are Lagrangian coordinates), where p(y) is the variation of the 
density in the unperturbed liquid, and the y axis is oriented opposite to the vector g. We 
obtain isobaric damped and growing Rayleigh--Taylor modes for k < 0 and two isobaric gravity 
waves for k > O. The expression for b = b(x, y, t) in (3.2) is presented for k < O, when the 
values of y are real. 

In the particular case of a homogeneous incompressible liquid the solution with y2 = 
--k[gl was found in [21]. It is shown in [2, 22] that when y2 = --klg[ the modes exist in a 
flat isentropie layer. It is shown in [22] that the mode with the increment y = ~ (k < 
O) is the only growing mode in the isentropic layer. In [23] the result of [21] is extended 
to a layered incompressible liquid. In this work it is emphasized that the solution is iso- 
baric and is applicable to an arbitrarily layered compressible liquid. 
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The isobaric mode solves the problem of multilayeredness and compressibility in the prob- 
lem of rupture of the layer. The point is that this mode has the maximum increment amongst 
all possible RT modes. Therefore, rupture occurs precisely because of the growth of the mode 
with y = r (k < 0). The lifetime of the layer is determined by the spectrum of the ini- 
tial perturbations [24] and the thickness of the layer. A pronounced layeredness decreases 
the lifetime, since for a fixed total thickness the effective thickness, equal to the thick- 
ness of the interlayer with the highest density containing a relative fraction of ~I of the 
total mass of the layer, decreases. 

In the case of two stationary gases with the same adiabatic indices, it is possible to 
calculate (the calculations are cumbersome and are not presented here), using the methods 
described in [2], the correction to the isobaric mode, associated with the finite magnitude 
of the ratio of the gas densities on the contact boundary. The dispersion curve has the form 

?~k lg l  l~Igl ( 8 + I )  e 2hi 
L F (~ + ~, ~ + 2, 2~,~) + O (~), 

where L i s  t he  t h i c k n e s s  o f  the  top  l a y e r ;  ~ = pH/p B < I ;  _ PH, PB a re  the d e n s i t y  o f  t he  b o t t o m  
and top gases, respectively, on the contact boundary; - (F -- I)-i; and F(~, ;~, z) is the 
confluent hypergeometric function. 

In conclusion, the author thanks S. I. Anisimov for his constant interest in this work. 
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ANALYSIS OF THE EFFECT OF THERMOELASTIC STRESSES OF THE 

CRYSTALLIZATION OF A SPHERE UNDER WEIGHTLESS CONDITIONS 

I. V. Belova and A. L. Ovsyannikova UDC 539.319 

In the crystallization of a sphere initially completely molten and then cooled slowly 
over its entire surface, thermoelastic stresses are created in the solid phase. If the in- 
tensity of the shear streasses reaches the critical value -- the yield point -- a region of 
plastic deformation appears. A description was given in [I] of experiments involving crys- 
tallization of copper and Silver specimens in the form of spheres (the amount of impurity 
was 0.001% in the copper specimen and 0.004% in the silver specimen) under weightless condi- 
tions. It was noted that the structure of the specimens obtained indicates a nearly complete 
lack of convective motion in the melt. It is interesting to study the effect of thermo- 
elastic stresses on the crystallization of specimens under weightless conditions and on the 
structure of the crystals obtained. 

The study [2] indicated that it might be possible to form a shrinkage cavity during the 
crystallization of a sphere if the solid phase is denser than the liquid phase. The occur- 
rence of thermoelastic stresses is one possible cause of shrinkage cavity formation. In the 
model in [2], the cavity begins to form at the very beginning of the crystallization process. 
Thus the stresses in the solid phase are due only to incompatible thermal strains, not to 
shrinkage of the material, and it can be anticipated that the resulting stresses will not 
have an appreciable effect on subsequent crystallization. 

Here we study the process of crystallization without the formation of a shrinkage cavity. 

I. The material is assumed to be incompressible in the liquid state and it is assumed 
that the crystallization process occurs in the absence of external effects (under weightless 
conditions and in vacuum). 

The crystallization process was studied numerically for metals (copper, aluminum, silver) 
in [3] and for semiconducting materials (germanium, silicon) in [4]. The problem was for- 
mulated in an isotropic approximation for all of the materials. 

We introduce a spherical coordinate system r, ~ , 6 with its origin at the center of 
the sphere. We have the following relations for the liquid phase: 

nt - V2% r 2 Or \ r ~ - ~ r  ]; ( 1 . 1 )  

P . . . .  p ( t ) l ,  (1.2) 

where T2, P2, c2, and X2 are the temperature, density, specific heat, and thermal conductivity 
of the liquid phase; P is the stress tensor; I is a unit tensor. 

The behavior of the material in the solid phase is described by a system of thermoelasto- 
plasticity equations. Due to spherical symmetry, only the normal components of the stress 
tensor ~r,or %, are nontrivial, while o~p-:o 0. The following equilibrium equation holds through- 
out the region of the solid state 
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